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SECTION I 

INTRODUCTION 

a 

* 

t 

e 

The purpose of the work performed under this grant is to begin to obtain information about 

the efficacy of fault-tolerant software by conducting two large-scale controlled experiments. In 

the first, an empirical study of multi-version software is being conducted. This experiment will 

be referred to as the “MVS” experiment in this report. The second experiment is an empirical 

evaluation of self testing as a method of error detection and will be referred to as the “STED” 

experiment. 

The M V S  experiment is being conducted jointly by NASA, four universities, and Charles 

River Analytics, Inc. The participating universities are North Carolina State University, the 

University of California at Los Angles, the University of Illinois at Urbana-Champaign and the 

University of Virginia. During the current grant reporting period, the work at the University of 

Virginia in the MVS experiment has centered around the preparation of an environment for 

testing the subject programs and the performance of a set of preliminary tests. Other elements of 

the experiment are being carried out at the other sites. 

The purpose of the MVS experiment is to obtain empirical measurements of the 

performance of multi-version systems. Twenty versions of a program have been prepared at four 

different sites (the universities) under reasonably realistic development conditions from the same 

specifications. The experimenters are now preparing to evaluate these programs in various ways, 

in particular by extensive dynamic testing. 

The STED experiment is being conducted jointly by the University of Virginia and the 

University of California, Irvine. The purpose of the STED experiment is to obtain empirical 



measurements of the performance of assertions in error detection. Eight versions of a program 

have been modified to include assertions at two different universities under controlled conditions. 

During the grant reporting period, the experiment has been designed, the various programs 

enhanced with self checks, and the resulting error detection performance measured. The 

preliminary results of the experiment have been written up as a conference paper. 

In this report, we describe the overall structure of the testing environment for the MVS 

experiment and its status in section 11. In section 111, we describe a preliminary version of the 

control system that has been implemented for the M V S  experiment to allow the experimenter to 

have control over the details of the testing. We summarize our work in the STED experiment in 

section IV. The paper describing the S E D  experiment is included as Appendix A. In Appendix 

B, we present the results of the preliminary testing of the programs generated in the MVS 

experiment. 
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SECTION I1 

MULTI-VERSION SOFTWARE TEST ENVIRONMENT STRUCTURE 

The basic layout of the test environment was decided at joint meeting of the research 

members held in Boston in April, 1986. This basic layout has been extended in various ways as a 

result of numerous discussion and changes in requirements. A fundamental goal of the 

environment is to be as independent of the machine used for the testing as possible. Thus, 

although built and distributed as a UNIX based system, the environment should run on other 

machines with little change. 

The philosophy of the test system is to allow the experimenter to specify the initial 

conditions and sensor failure requirements for a single simulated flight and then to generate a 

series of acceleration values that are supplied to the programs along with the initial and failure 

conditions. This is intended to simulate a single flight of an aircraft. 

The system allows the experimenter to specify that several (perhaps many) flights are 

required each with a different (but perhaps similar or related) set of initial conditions. For 

example, some parameter might have to be varied systematically over some range. In this case, 

the system will create a sequence of initial conditions in which the required parameter is varied 

bJt the same set cf acceleration and Euler angles is used for each simulated flight in the set. The 

systematic variation and the reexecution of the programs on the set of accelerations is handled by 

the execution environment. 

The environment consists of a set of programs that are organized into five tiers or levels. 

The general form is shown in figure 1. The interfaces between the levels are precisely defined. 

Each consists of character files thereby permitting the greatest degree of machine independence. 

The details of the interfaces are referred to here as formats. For example, format 0 describes the 

- 3 -  
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interface between tier-0 and tier-1, and consists of a single explicitly named file. Other formats 

use more than one file, including in most case the standard input and standard output files. 

Figures 2,3,4 and 5 show the input and output details for each tier individually. In these figures, 

a dashed line represents either standard in or standard out, and a solid line connected to a named 

ellipse indicates an explicit disk file. The exact content of the formats is described in the section 

111. 

Tier-0 

The purpose of the single program in tier-0 is to interact with the experimenter to determine 

the parameters of the tests that have to be run. This program produces a file of data for control of 

subsequent programs after gathering the details of the required tests from the experimenter. The 

program makes no decisions and generates no data itself (except defaults) so the output datafile 

contains everything that the experimenter supplied. For simple tests, most parameters can take 

the default values allowing the definition of the tests to be created with very little input from the 

experimenter. 

Terminal I: 
Fig. 2 - Input And Output For Tier-0 
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Optionally, an existing parameter file can be read by the program to provide a set of initial 

conditions for the interaction with the experimenter. Thus if two sets of tests are to be run with 

minimal change between runs, the data file from one can be read in to set values initially for the 

experimenter during the interaction. A second data file that differs little from the first can the be 

generated merely by indicating the changes. 

As will be seen from the discussion in section 111, the interaction camed out by the tier-0 

program could result in the specification of a large number of tests. The number is computed and 

supplied to the experimenter for confirmation. 

The tier-0 program is written in Pascal. Although it is interactive, the program operates in a 

very simple menu style to ensure independence of terminal characteristics, 

Tier-1 

The programs in tier-1 obtain the specifications for the initial conditions from the file that 

the tier-0 program creates. They then generate the series of accelerations and angles that is 

required for the specified test flight(s). 

There are three programs in tier-1. Each operates with the same input and output interfaces 

(formats 0 and 1). and as far as the rest of the environment is concerned, they are equivalent. The 

first generates a series of accelerations from a trace file. It merely reads accelerations obtained 

from measurement on the B737 aircraft and converts them to the format required by the 

following tier. This program is written in Pascal. 

The second program generates accelerations and angles randomly. Although these values 

are unrcalistic, they are adequate for testing. This program is written in Pascal. 

- 6 -  
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Fig. 3 - Input And Output For Tier-1 

The third program is an aircraft simulator that generates realistic values for the required 

data. This program is being prepared by Charles River Analytics. It is written in FORTRAN. 

There is a single program in tier-2, the sensor simulator. This program is written in 

FORTRAN and the original version was supplied by Charles River Analytics. This program has 

been modified by the University of Virginia to include the necessary loops for driving the 

following tiers where parameters are being varied in a series of simulated flights. The program 

takes an acceleration value and other parameters supplied from the data file generated by the 

tier-0 program and generates the corresponding sensor values. 
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Fig. 4 - Input And Output For Tier-2 

Tier-3 

Tier-3 contains the actual versions under test, several driver programs, and a utility 

program. It was deemed inadvisable to attempt to run all 20 versions together with a single 

driver. Merely compiling a major program of that size would take considerable resources. We 

have found that several Pascal compilers available to us were unable to compile such a program. 

To avoid these problems, tier-3 contains four drivers, one for each university. They read 

the same inputs but create their own output files and so can be run in parallel. A utility program 

(the combiner) is then used to combine the output files so that they appear to have come from a 

driver that executed all twenty programs together. The combiner merely reorganizes the output 

files of the four drivers. It makes no content changes to the data. 



Flight Test Cases 

Results 
Combiner 

Fig. 5 - Input And Output For Tier-3 

The tier-3 drivers keep the initial conditions for a particular flight as global data while 

executing the required versions. This data includes the calibration data. Thus although each 

program thinks that it will operate on a single flight acceleration value, the calibration and other 

parametric information is identical for each acceleration for a flight and so the effect is to have 

the program do calibration followed by a series of acceleration values. 

Tier-4 

Tier4 consists of an arbitrary number of “filter” programs that read the output of tier-3 and 

do useful things with the output. As new functions are required, new filters will be added. 

Present filters include programs to allow formatted printing of the raw test results in various 

forms. Filters are being developed to allow the raw data produced by the tests to be stored in as 

compact a form as possible on tape. The purpose of these filters is to allow tests to be run and 

their entire output to be saved for later analysis. This will permit tests to be performed without 
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all possible analyses being performed at the same time. 
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SECTION I11 

MULTI-VERSION SOFTWARE TEST ENVIRONMENT FORMATS 

In this section the detailed contents of the interface formats are discussed. 

Previously, the set-up for testing the RSDIMU versions allowed only minimal control over 

the generation of the input variables. Consequently, it was not possible to study the effects of 

gradually changing the values of such variables without repeatedly recompiling the test 

programs, which would be, of course, senseless. What follows describes the means used to give 

the experimenter greater control over generation of input values to the versions in the present 

environment. With such control the effects of each RSDIMU input variable can be studied 

individually or in combination with other selected input variables in whatever ways might be 

deemed desirable during the course of the testing. 

Each set of input variables, as generated by this control information, is interpreted as a set 

of initial conditions. Given this set of initial conditions, a series of testcases is generated, each 

with a different acceleration value and set of vehicle frame Euler angles. The number of 

acceleration values used is given by a control parameter. Within the series of testcases, sensor 

failure also is simulated as specified by the control information. By keeping the same set of 

initial conditions for a sequence of acceleration values, the calibration data is kept the same, and 

the resulting effect is that of performing one calibration of the sensors and then saving that 

information to be used while performing a series of in flight sensor readings and sets of 

calculations. In this manner, the capability is achieved for what is hoped to be a reasonable 

simulation of “flight”, with successive sensor rcadings taken over a period of time. 



0 

0 

0 

Sensors are failed on each specified testcase according to their control values (see below). 

The test drivers in tier-3 have been modified so that for each two consecutive acceleration value 

and angle sets with the same set of initial conditions, the values for linfailin input to each version 

are the values for linfailout computed by that version on the previous acceleration and angle set. 

In this way the various responses of the versions to sensor failure can be studied over a sequence 

of acceleration values. 

The variables that can be controlled are as follows: 

liistd 

linfailin 

rawlin 

dmode 

temp 

scale0, 

scale1 , 

scale2 

misalign 

nsigt 

phii, 

thetai, 

psii 

: noise standard deviation for accelerometers 

: accelerometer failure initial conditions 

: raw sensor data for acceleration computation 

: display mode 

: current temperature on each face 

: linear accelerometer slope coefficients 

: accelerometer misalignment angles 

: noise tolerance 

: Euler angles for rotation from the vehicle frame to the 

instrument frame 

Rawlin cannot be controlled directly, as it must be generated by the sensor simulator based on the 

acceleration, Euler angle, and misalignment angle values. However, whether its value for a given 

sensor should reflect failure during calibration or failure during flight can be controlled directly, 

-12- 
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a 
and so can the value for noise which is used in generating the rawlin value for a sensor which is 

to be found noisy by the RSDIMU versions. Offraw, the calibration data for the eight 

accelerometers, can also be indirectly controlled in similar ways, but that control is being left for 

a later modification of the test control. 

For all of the variables above, except for linfailin, misalign, scale0, scalel, scale2, and the 

sensor failure control information. there are defined three control modes: 

0 : to indicate that a value should be randomly-generated within a specified range, 

0 

D 

D 

1 : to indicate that the variable should be varied over a specified range while all other variables 

except the acceleration values are held constant, 

2 : to indicate that the variable should be set to a certain specified constant. 

For each of these variables the control information is contained on one line of standard 

input, with the formats as follows: 

for mode 0: 0 min max 

for mode 1: 1 lowerbound upperbound step 

for mode 2: 2 constant 

“Min” and “max” specify the range within which the value is to be randomly-generated. 

“Lowerbound” and “upperbound” specify the range over which the variable is to be varied for 

mode 1 and “step” specifies the increments by which it is to be varied. “Constant” is the 

specified value to which the variable is to be set when mode 2 is used. Min, max, lowerbound, 

upperbound, step, and constant will each be assumed to be of the same type as the RSDIMU input 

variable which they are being used to control. 

- 13 - 
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For linfailin and for the control information regarding which sensors will fail during 

calibration (equivalent to the output variable “linnoise”) the format is slightly different: 

for mode 0: 0 lowerbound upperbound 

for mode 1: 1 number 

for mode 2: 2 boo11 bool2 boo13 boo14 boo15 bo016 boo17 boo18 

Here the modes are defined as follows: 

e 

0 

0 

0 : specifies that a randomly-generated number of the eight values be set to true. This number 

will be between “lowerbound” and “upperbound” inclusive. Which of the sensor values 

are set will be randomly determined. 

1 : specifies that “number” of the eight values be set to true. Which of the sensor values are 

set will be randomly determined. 

2 : specifies that the eight values be set to the respective constant values, “booll” through 

‘ ‘bo018 ” 

“Number” is assumed to be an integer and “booll” through “bool8” will be assumed to be 

either 0’s or 1’s. with “1” representing true and “0” representing false. “Lowerbound” and 

“upperbound” will be assumed to be integers between 0 and 8 inclusive. 

For misalign, scale0, scalel, and scale2 the format is as follows: 

min max 

0 
In this case, since there is only one mode, mode numbers are unnecessary. That mode specifies 

that each of the 24 misalign values (or each of the 8 scaleX values) be randomly-generated 

-14 -  
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between the values “min” and “max”, which are assumed to be real numbers and which may be 

equal. 

In addition to the ability to control the values of RSDIMU input variables, it is desirable to 

have the ability to control which sensors fail during “flight” and during which iteration of sensor 

reading during the “flight” each sensor fails. To this end the following format is used: 

intl int2 int3 int4 int5 int6 int7 int8 

“Intl” through “int8” are integers which represent the sensor reading iteration during which 

sensors 1 through 8 respectively will fail. A value of 0 for “intX” indicates that sensor X will 

not fail during this test of the RSDIMU procedures. The non-zero values for “intl” through 

“int8” must be distinct from one another, as it is assumed in the RSDIMU specifications that at 

most one sensor will fail on a given sensor reading. The indicated sequence of sensor failures 

will be simulated once for each set of initial conditions (i.e. for each “flight”). Sensor failure 

simulation will be accomplished by modifying the generated value for rawlin in such a way that it 

will appear too noisy to be functional. The modifying value used will be the value for “noise” 

generated by its control information. Sensors are made to fail not only on the desired sensor 

reading, but also on all successive readings within a given “flight”, so that if a particular 

RSDIMU version fails to mark that sensor as having failed on that iteration, it may still do so on 

a subsequent iteration. The value for “intX” should not exceed the value for the number of 

acceleration values per “flight”. 

The known acceleration values and the values for phiv, thetav, and psiv are no longer 

obtained from standard input. Instead, the tier-1 programs write them to a temporary file named 

by the control parameter “AccelerationFileName” so that they can be used repeatedly (i.e. for 

each set of “initial conditions”). 

- 15 - 
e 



e 

These control formats have been implemented in such a way that, if two or more variables 

are being varied over ranges, testcases are generated for a l l  combinations of all the values over 

which each is being vaned, and at the same time conform to any control specifications for other 

variables. 

a 
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CONTROL INFO I Number of Acceleration Values for each flight 
BLOCK I Seedl, Seed2 for random numbers, tiers 1 and 2 

I Version Selection Vector (1 element per version, 1 selects 
I corresponding version for execution, 0 bypasses) 
I AccelerationFileName 
I control info for linstd 
I control info for linfailin 
I control info for number of sensors to fail in calibration 
I control info for sensor failure during flight 
I control info for noise 
I control info for dmode 
I control info for temp[l] 
I control info for temp[2] 
I control info for tempt31 
I control info for temp[4] 
I control info for scale0 
1 control info for scale1 
I control info for scale2 
I control info for misalign 
1 control info for nsigt 
I control info for phii 
I control info for thetai 
I control info for psii 

0 

- 17 - 



FILE FORMAT 1 (format for input to tier-2 programs): 

CONTROL INFO BLOCK (see above) 

+ a file containing Number-of-Acceleration-Values lines of 

VehicleAccel[x] VehicleAccel[y] VehicleAccel[z] phiv thetav psiv 

e 

e 

a 

a 
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CONTROL INFO BLOCK (see above) 
FLIGHT BLOCK (repeated once for each flight) 

I obase 
I offraw[l ,I] ... offraw[8,1] 
I .  
I -  
I -  
I offraw[l,50] ... offraw[8,50] 
I linstd 
I linfailin[l] ... linfailin[8] {encoded as integers 0..1} 
I dmode 
I temp[l] ... temp[4] 
I scaleO[l] ... scale0[8] 
I scalel [ l ]  ... scalel [8] 
I scale2[1] ... scale2[8] 
I misalign[l ,I] ... misalign[l,6] 
I misalign[2,1] ... misalign[2,6] 
I misalign[3,1] ... misalign[3,6] 
I misalign[4,1] ... misalign[4,6] 
I nsigt 
I phii 
I thetai 
I psii 
I ACCELERATION BLOCK (repeated once per accel value) 
I I rawlin[l] ... rawlin[8] 
I I normface[l] ... normface[4] 
I I phiv thetav psiv 
I I KnownBestest.acceleration[x] ... KnownBestest.acceleration[z] 

0 
- 1 9 -  
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CONTROL INFO BLOCK (see ' above) 
The Following Repeated For Each Flight: 

I KnownBestest.accel[x] ... KnownBestest.accel[z] 
I The Following Repeated for Each Version Selected For Execution: 
I I linoffset[l] ... linoffset[8] 
I I linnoise[l] ... linnoise[8] {encoded booleans} 
I I linfailout[l] ... linfailout[8] {encoded booleans} 
I I linout[l] ... linout[8] 
I ldismode 
I I disupper[l] ... disupper[3] 
I I dislower[l] ... dislower[3] 
I 
I 
I 
I 
I 
I I chanface[l] ... chanface[4] 
I I systatus {encoded boolean} 

I bestest.status bestest.acceleration[l] ... bestest.acceIeration[3] 
I chanest[l].status chanest[l].accel[l ] ... chanest[l].accel[3] 
I chanest[2].status chanest[2].accel[l] ... chanest[2].accel[3] 
I chanest[3].status chanest[3].accel[l] ... chanest[3].accel[3] 
I chanest[4].status chanest[4].accel[l] ... chanest[4].accel[3] 

e 

a 

e 

e 
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SECTION IV 

ERROR DETECTION BY SELF TEST EXPERIMENT 

In the second experiment, the empirical evaluation of self testing for e m r  detection, we are 

attempting to determine how well programmers can prepare assertions for the detection of 

execution-time errors. This study is empirical. 

From the set of twenty-seven programs written for the Knight and Leveson experiment [l], 

eight were chosen for modification. Each of these eight was supplied to three programmers who 

worked separately to add assertions to the programs. The effort expended by each programmer 

was one week. The experiment protocol was: 

(1) The program specification was supplied to the programmers and they were given a 

presentation describmg the goals of the experiment, the protocol, and the schedule. Each 

programmer was also supplied with a copy of the chapter on e m r  detection from the text by 

Anderson and Lee [2]. 

(4) 

0 

The programmers were required to study the specification and the text on error detection, 

and then to attempt to develop assertions based purely on knowledge of the specifications. 

When the specification-based assertions were complete, the programmers were supplied 

with the source text of the program they were to modify. The programs were then modified 

to include assertions. 

After the assertions had been added, the programmers were supplied with fifteen test cases 

that executed correctly prior to the addition of the modifications. These test cases should 

have executed correctly after the addition of the assertions. The programmers were 

-21 - 
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requested to test the modifications and assertions in any way they chose in addition to the 

fifteen test cases. 

Finally, the modified programs were subjected to the same set of acceptance tests that had 

been used in the original experiment [ 13. 

The programmers were asked to keep detailed logs of their effort during the time they were 

working on the project, and each was required to complete a background technical and 

educational questionnaire. 

Once all three copies of each of the eight programs had been prepared and accepted, the 

modified programs were tested using the same test driver and test cases that were used in the 

original experiment. The results of this testing and other malysis are presented in Appendix A. 
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APPENDIX A 

AN EMPIRICAL STUDY OF SOFTWARE ERROR DETECTION 

USING SELF-CHECKS 

S.D. Cha 

N.G. Leveson 

T.J. Shimeal 

University of California, b i n e  

J.C. Knight 

University of Virginia 

This paper to be presented at the Seventeenth International Symposium on Fault- 

Tolerant Computing ( F K S  17), Pittsburgh, PA. 
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Abstract 

ci 

This paper presents the results of an empirical study of error detection using self-checks. A 

total of twenty-four graduate students in computer science at the University of Virginia and the 

University of California, Imine, were hired as programmers. Working independently, each first 

prepared a set of self-checks using just the specification for an application, and then each 

modified an existing implementation of the specification. The modified programs were analyzed 

to classify the various checks that the programmers wrote, and then tested to measure the emr -  

dctection performance of the checks. 

The goal of this study was not just to obtain quantitative results but to leam more about 

such checks and how they might best be implemented. This information may result in better 

methods for formulating checks, making them easier to write and more effective. The analysis of 

the checks revealed that there are great differences in the ability of individual programmers to 

design effective checks. We found that some checks that might have been effective failed to 

detect a fault because they were badly placed, and there were numerous instances of checks 

signaling non-existent emrs. In general, speci fication-based checks alone were not as effective 

as combining them with code-based checks. 

c 

-25 -  



1. Goals of the Study 

Crucial digital systems can fail because of faults in either software or hardware. A great 

deal of research in hardware design has yielded computer architectures of potentially very high 

reliability, such as SIFT [Wensley (1978)l and FTMP [Hopkins (1978)l. In addition, distributed 

systems (incorporating fail-stop processors [Schlicting and Schneider (1983)l) can provide 

graceful degradation and safe operation even when individual computers fail or are physically 

damaged. 

The state of the art in software development is not as advanced. Current production 

methods do not yield software with the required reliability for crucial systems, and advanced 

methods of formal verification [Gries (198l)l and synthesis [Partsch and Steinbruggen (1983)l 

are not able to deal with software of the required size and complexity. Fault tolerance [Randell 

(1975)l has been proposed as a technique to allow software to cope with its own faults in a 

manner reminiscent of the techniques employed in hardware fault tolerance. Many detailed 

proposals have been made in the literature, but there is little empirical evidence to judge which 

techniques are most effective or even whether they can be applied successfully to real problems. 

This study is part of an on-going effort by the authors to collect and examine empirical data on 

software fault tolerance methods in order to focus hture research efforts and to allow decisions to 

be made about real projects. 

Previous studies by the authors have looked at N-version programming in terms of 

independence of failures [Knight and Leveson (1986a)], reliability improvement, and error 

detection [Knight and Leveson (1986b)l. Other empirical studies of N-version programming 

have been reported [Avizienis and Chen (1977). Gmeiner and Voges (1979). Avizienis and Kelly 

(1984), Scott et. al. (1984), Bishop et. 01. (1985), and Dunham (1986)l. .4 study by [Anderson et. 

al. (198S)l showed promise for recovery blocks but concluded that acceptance tests are difficult 
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to write. Acceptance tests are a subset of the more general run-time assertion or self-check used 

in exception handling and testing schemes. More information about the use of self-checks to 

detect software errors might result in better methods for formulating checks, making them easier 

to write and more effective. Our goal in this study was not merely to provide numerical data but 

to learn more about such checks and how they might best be implemented. 

In order to eliminate as many independent variables from the experiment as possible, it was 

decided to focus on error detection apart from other issues such as recovery. This also means that 

the results have implications beyond software fault tolerance alone, for example in the use of 

embedded assertions to detect software errors during testing [Stuck (1977)]. Furthermore, in 

some safety-critical systems (e.g., the Boeing 737-300 and the Airbus A310) error detection is the 

onZy objective. In these systems, software recovery is not attempted and, instead, a non-digital 

backup system such as an analog or human alternative is immediately given control in the event 

of a computer system failure. The results of this study may have immediate application in these 

areas. The next section describes the design of the study. Following this, the results are 

described and conclusions drawn. 
a 

2. Experimental Design 

(E 

0 

This study uses the programs developed for a previous experiment by [Knight and Leveson 

(1986a)l. Twenty-seven versions of a program to read radar data and determine whether an 

interceptor should be launched to shoot down the object (hereafter referred to as the Launch 

Interceptor Program, or LIP) were prepared from a common specification by graduate students 

and seniors at the University of Virginia and the University of California, Irvine. Extensive 

efforts were made to ensure that individual students did not cooperate or exchange information 

about their program dcsips during the development phase. The twenty-seven LIP programs 
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have been analyzed by running one million randomly generated test cases on each program and 

locating the individual faults that were detected during the testing procedure. 

In the present study, 8 students from UCI and 16 students from UVA were employed for a 

week’s time to instrument the programs with self-checking code in an attempt to detect errors in 

the programs. Eight programs were selected from the 27 and each was randomly assigned to 

three students (one from UCI and two from UVA). The students were all graduate students in 

computer science with an average of 2.35 years of graduate study. Professional experience ranged 

from 0 to 9 years with an average of 1.7 years. None of the participants had prior knowledge of 

the LIP program nor were they familiar with the results of the previous experiment. There was 

no significant correlation found between a participant’s graduate or industrial experience and 

their success at writing self-checks. 

Participants were provided with a brief explanation of the study along with an introduction 

to writing self-checks, AU also read Chapter 5 on Error Detection from a textbook on fault 

tolerance [Anderson and Lee (198l)l. The participants were first asked to study the LIP 

specification and to write checks using only the specification, the training materials, and any 

additional references the participants desired. When they had submitted their initial checks, they 

were randomly assigned a program to instrument. The participants were asked to write checks 

with and without looking at the code in order to determine if there was a difference in 

effectiveness between self-checks designed by a person working from the requirements alone and 

those for which the person has access to and information about the program code. On the one 

hand, the person working only from the requirements might provide more independence by not 

being influenced by the written code. However, it could also be argued that looking at the code 

will suggest different and perhaps better self-checks. Because we anticipated that the process of 

examining the code might result in the participants detecting faults through code-reading alone, 

participants were asked to report any such detected faults but to still attempt to write a self-check 

- 

0 
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The instrumented versions were subjected to an acceptance test (200 randomly generated 

test cases) as in the previous experiment. The original versions were known to run correctly on 

those data, and we wanted to attempt to remove obvious faults introduced by the self-checks. If 

any false alarms were raised (faults reported that did not actually exist) or if new faults were 

detected which had been introduced into the program by the instrumentation, the programs were 

returned to the participants for correction. Along with the instrumented version, participants 

submitted time sheets, background profile questionnaires, and descriptions of all program faults 

identified by code reading. 

After the instrumented programs had passed the acceptance test, they were executed using 

the test cases on which they had failed in the previous experiment along with 20,000 new 

randomly-generated test cases to see if new faults might have been detected. Finally, the self- 

checks were carefully examined and catalogued as to type of check and effectiveness. 

3. Results 

The first task of the experiment participants was to read through the program requirements 

specification and to design self-checks based solely on that specification. These self-checks were 

found to fall into four groups based on the general strategy of check used: 

[l] Duplication Checks: self-checks that duplicate the functionality of the code and compare 

results. Most, but not all, of the self-checks in this group use algorithms different from the 

original source code. 

121 Structural Checks: self-checks that verify the proper use of data structures or the proper 

semantics of code. Examples include a check which verifies that the exit condition of a 
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loop is true immediately following the loop and a check that verifies that data values have 

not been improperly overwritten. 

[3] Reversal Checks: self-checks that reverse the operation performed by the code and then see 

if the results are consistent with the input data. 

[4] Consistency Checks: self-checks that determine if the results have certain properties. 

Examples of consistency checks include range checking, arithmetic exception checking, and 

type checking. 

Table 1 shows the classification of the self-checks designed from the specification.' The 

participants labeled 3c and 8b did not provide specification-based self-checks. Note that the 

largest number of checks written were consistency checks followed by duplication checks. 

Performance is discussed later, but Tables 4 and 6 show that a total of 33 self-checks were * 
completely or partially effective in detecting errors. Of these 33 effective checks, 4 (or 12%) 

were formulated by the participants after looking at the requirements specification only. The 

remaining 88% of the effective checks were designed after the the participants had looked at the 
a 

code. Although it has been suggested [Anderson and Lee (198l)l that acceptance tests in the 

recovery block structure must be based on the specification alone, our results indicate that 

0 

effectiveness of the self-checks can be improved when the specification-based checks are refined 

and expanded by source code reading and a thorough and systematic instrumentation of the 

program. It appears that it is very useful for the instrumentor to actually see the code when 

writing self-checks. 

The second task of the participants was to instrument a particular program with self-checks. 

No limitations were placed on the participants as to how much time could be spent (although they 

order to aid the reader in referring to previously published descriptions of the faults found in the original LIP programs, the 
programs are referred to in this paper by the numbers previously assigned in the original experiment. A single letter suffix is added (a, 
b. or c) to distinguish between the three independent instrumentations of the programs. 
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Table 1: Specification-Based Self-checks 

were paid only for a 40 hour week which effectively set an upper bound t ) or how much code 

could be added. Table 2 describes the change in length in each program during instrumentation. 

Note that there is a great variation in the amount of code added, ranging from 48 lines to 835 

lines. Participants added an average of 37 self-checks, varying from 11 to 97. Despite this 

variation, there was no correlation between the total number of checks inserted by a participant 

and the number of those checks that were effective at finding faults. That is, more checks did not 

'Several reponed spending more than 40 houn on the project. 
*These self-checks were too vague to be classified 
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Version 
# 
3 
6 
8 

12 
14 
20 
23 
25 

necessarily mean better fault detection. 

Number of Lines Increase 

757 909 1152 805 152 395 48 
643 859 887 700 216 244 57 
600 1046 1356 824 446 756 224 
573 1121 696 806 548 123 233 
605 905 1342 712 300 737 107 
533 611 1368 596 78 835 63 
349 1065 417 544 716 68 195 
906 1644 1016 1022 738 110 116 

orirrinal a b c a b c 

e 

a 

e 

e 

0 

There was also no statistically significant relationship between the number of hours claimed 

to have been spent (as reported on the timesheets) by the participants and whether or not they 

detected any program faults. Table 3 shows the amount of time each participant spent reading the 

specification and code, developing self-checks based on that reading, implementing the self- 

checks and debugging the self-checks. The last two columns of the table describe the period of 

time over which this effort was expended. The “Days Active’’ column is the number of different 

dates which appeared on each participant’s time-sheet. The “Days Elapsed” column is the 

number of days between the first and last date on each time-sheet. Three participants (14a, 20a, 

and 25a) did not submit a time-sheet and are excluded from this table. 

Table 4 classifies the program-based self-checks in terms of strategy used and effectiveness. 

Checks are classified as effective if they correctly report the presence of an error during 

execution. Two partially effective checks by participant 23a that detect an error most (but not all) 

of the time are counted as effective. Ineffective checks are those that do not signal an error when 

one occurs during run-time in the module being checked. False alarms signal an error when no 

0 
Table 2: Lines of Code Added During Instrumentation 
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Table 3: Summary of Participant Time-Sheets 

error is present. Finally, the effectiveness is classified as unknown if the check does not signal an 

error and the module being tested is correct. 

It can be seen from Table 4 that duplication and consistency checks were about equally 

effective in detecting faults although more consistency checks were used. For these programs, 

structural and reversal checks were not effective, but this may have been influenced by the types 

of faults that were actually in the programs. We examined the ineffective self-checks (checks on 

code that contained faults but did not detect the faults) in detail. They appear to fail due to one or 

more of the following reasons: 
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Effectives 
a 

1 0 0  0 
0 0 0  0 
0 0 0  0 
2 0 0  1 
0 0 0  0 
0 0 0  0 
2 0 0  0 
0 0 0  0 
1 0 0  0 
2 0 0  0 
0 0 0  0 
1 0 0  8 
0 0 0  0 
0 0 0  0 
0 0 0  0 
0 0 0  0 
0 0 0  2 
0 0 0  1 
2 * 0 0  0 
0 0 0  0 
0 0 0  0 
7 0 0  2 
1 0 0  0 
0 0 0  0 

19 0 0 14 

0 

Unknowns 
D S R C  
2 19 0 8 

11 10 0 13 
0 11 0 0 
6 19 1 0 
0 19 0 34 
0 0 2  8 

13 0 0 0 
6 54 0 2 
3 1 0 10 
2 3 0 31 
0 0 0 17 
0 16 0 8 
0 1 1 56 
1 1 23 37 
0 0 1 15 
4 0 3  3 

12 0 0 80 
0 0 0 27 
9 0 0  0 
0 0 0 24 
0 0 0 30 
0 0 0 31 

1 4  0 0 6 
' 0 14 0 22 
173 168 31 462 

0 

Total 

33 
36 
14 
34 
82 
19 
15 
68 
19 
40 
22 
35 
63 
65 
17 
11 
99 
29 
11 
29 
32 
40 
11 
41 

865 e 

e 

e 

A= 
3a 
3b 
3c 
6a 
6b 
6c 
8a 
8b 
8c 
12a 
12b 
- 12c 

14a 
14b 
14c 
20a 
20b 
2oc 
23a 
23b 
23c 
25a 
25b 
25c 

Tota 

- 

- 

Ineffectives 
DSRCI 

1 2 0  0 
2 0 0  0 
0 3 0  0 
3 2 0  0 
0 12 0 16 
0 0 0  9 
0 0 0  0 
1 4 0  0 
1 0 0  0 
0 0 0  2 
0 0 0  5 
0 0 0  0 
0 0 0  5 
0 0 0  3 
0 0 0  1 
0 0 0  0 
2 0 0  1 
0 0 0  1 
0 0 0  0 
0 0 0  5 
0 0 0  2 
0 0 0  0 
0 0 0  0 
0 5 0  0 

10 28 0 50 

False Alarms 
w 
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 1 0 0  
0 0 0 0  
0 0 0 0  
0 1 0 0  
2 0 0  1 
0 0 0 0  
0 0 0 0  
1 0 0 1  
0 0 0 0  
0 0 0 0  
0 0 0 0  
1 0 0 0  
1 0 0 1  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
5 2 0 3  

Table 4: Self-check Classification 

0 Wrong self-check strategy - the participant used a type of self-check inappropriate to detect 

the fault present in the code. For example, use of a structural check when the fault was an 

inadvertent substitution of one variable for another in an expression. 

0 Wrong check placement - the participant placed the self-check in a location where not all 

results were checked, and the fault was on a different path. 

*These two checks were effective most, but not all. of the time. 

-34 - 
a 



a 

0 

0 

a 

* 

0 

0 Use of the original faulty code in the self-check - the participant falsely assumed a portion 

of the code was correct and called that code as part of the self-check. 

It should be noted that the placement of the checks may be as crucial as the content. This has 

important implications for future research in this area and for the use of self-checking in real 

applications. 

It should not be assumed that a false alarm involved a fault in the self-checks. In fact, there 

were cases where an error message was printed even though both the self-check and the original 

code were correct. This occurred when the self-check made a calculation using a different 

algorithm than the original code. Because of the inaccuracies introduced by finite precision 

arithmetic compounded by the difference in order of operations, the self-check algorithm 

sometimes produced a result which differed from the original by more than the allowed tolerance. 

Increasing the tolerance does not necessarily solve this problem in a desirable way. This same 

problem occurred in our previous experiment and is discussed in detail elsewhere [Brilliant, 

Knight, and Leveson (1986a)l. 

Some faults were detected while the participants were reading the code. The numbers in 

Table 5 refer to the numbering used to identify the individual faults in [Brilliant, Knight, and 

Leveson (1986b)J. Three faults were reported that actually were not faults; the participant 

misunderstood the code. 

Table 6 summarizes the detected faults by how they were found. 20% of the detected faults 

were dctected by specification-based checks, 40% by code-reading, and 40% by code-based 

checks. Note that often more than one check detected the same fault in the code-based case, 

which was not true of the specification-based or code-reading faults. 

0 
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Object 

Faults Detected 
Effective Checks 

e 

Total Due To 
Smc-based Desim Code Reading Code-based Design 

4 8 8 20 
4 8 21 33 

e 

0 

e 

0 

e 

e 

Version Fault I*\ 
pi 

20.2 

Table 5: Faults Detected Through Code-Reading 

Table 6: Fault Detection Classified by Instrumentation Technique 

One final way of looking at the results of this study is to consider the number of faults 

detected and introduced by the participants. Table 7 shows this information. This data makes 

very clear the difficulty of writing effective self-checks. Of 20 previously known faults in the 

programs, only 11 were detected (the 14 detected known faults in Table 7 include some multiple 

detections of the same fault) and only 3 of the 11 detected faults were found by more than one of 

the three participants instrumenting the same program. It should be noted, however, that the 

versions used in the experiment are highly reliable (an average 99.9165% success rate on the 

previous one million case testing), and many of the faults are quite subtle. We could find no 

particular types of faults that were easier to detect than others. Individual differences in ability 

appear to be important here. 
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Already Known Faults # Other Faults 

3a 
3b 
3c 
6a 
6b 
6c 
8a 
8b 
8c 
12a 
12b 
12c 
14a 
14b 
14c 
20a 
20b 
2oc 
23a 
23b 
23c 
25a 
25b 
25c 
total 

Incorrect 
0 
0 
0 
0 
1 
0 
0 
1 
3 
0 
0 
1 
0 
0 
0 
1 
2 
0 
3 
0 
0 
0 
0 
0 

12 

NoAnswer 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
2 
1 
0 
4 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 

10 

Present 

4 

3 

Detected Detected 
1 0 
0 0 
0 0 
2 1 
0 0 

1 
3 I 1  2 1 0  

2 

2 

2 

2 

2 

0 0 
2 0 
0 0 
0 1 
1 1 
0 0 
1 1 
0 0 
0 0 
0 0 
0 0 
1 1 
1 0 
2 0 
0 0 

Newly Added Faults 

20 14 6 

Table 7: Summary of Error Detection 

One rather unusual case occurred. One of the new faults detected by participant 8c was 

detected quite by accident. There is a previously unknown fault in the program. However, the 

checking code contains the same fault. An error message is printed because the self-check code 

uses a different algorithm than the original, and finite precision problems cause the self-check to 

differ from the original by more than the allowed real-number tolerance. We discovered the new 

fault while evaluating the error messages printed, but it was entirely by chance. This same thing 

occurred in modules which did not contain a fault, and in that case the error message was 
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classified as a false alarm (as discussed above). Our decision was to classify the self-check as 

effective because it does signal a fault when a fault does exist, but this is a subjective choice. 

It is very interesting that the self-checks detected 6 faults not previously detected by 

comparison of twenty-seven versions of the program with a gold version over a million test cases. 

After closer examination of the newly discovered faults, we found that one of the reasons they 

were not uncovered previously is that the strategy of test case selection did not include those test 

cases that would have revealed the faults. This points out the well-known difficulty in selecting 

appropriate test cases. The fact that the self-checks uncovered new faults implies that they may 

have some advantages over voting alone. To understand why, it is instructive to examine an 

example of one of the previously undetected faults. 

Some algorithms are unstable under a few conditions. More specifically, several 

mathematically valid formulae to compute the area of a triangle are not equally reliable when 

implemented using finite precision arithmetic. In particular, the use of Heron’s formula: 

area =&* (s-a >* (s -b >* (s -c ) 

where a ,  b , and c are the distances between the three points and s is (a +b +c)/2, fails in the 

rare case when all the following conditions are met simultaneously: 

Three points are almost co-linear (but not exactly). s will then be extremely close to one of 

the distances, say a ,  so that (s-a) will introduce round-off errors (around in the 

hardware employed in this experiment). 

The product of the rest of the terms, s* (s -b )* (s -c ), is large enough (approximately lo4) 

to make rounding errors significant through multiplication (approximately 10-l2). 

The area formed by taking the square root is slightly larger than the real number 

comparison tolerance ( lod6 in our example) so that the area is not considered zero. 
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*lY2+X2Y3+x3Yl-Y l x 2 - Y P 3 - Y 3 X i  

2 
area = 

where xi and yi are the coordinates of the three points, did not fail since the potential roundoff 

errors cannot become “significant” due to the order of operations. 2 of the 6 previously 

unknown faults detected involved the use of Heron’s formula. Since the source of the 

unreliability is in the order of computation and inherent in the formula, relaxing the real number 

comparison tolerance will not prevent this problem. The fault in Heron’s formula was not 

detected during the previous testing since the voting procedure compared the final result only, 

whereas the self-check verified the validity of the intermediate results as well. For the few cases 

in which it arose, the faults did not affect the correctness of the final output. However, under 

different circumstances the final output would have been incorrect, 

Although new faults were introduced through the self-checks, this is not very surprising. It 

is known that changing someone else’s program is difficult and whenever new code is added to a 

program there is a possibility of introducing faults. All software fault tolerance methods involve 

adding additional code of one kind or another to the basic application program. The major causes 

of the new faults were an algorithmic error in a redundant computation, use of an uninitialized 

variable during instrumentation, logic error, use of Heron’s formula, infinite loops added in 

instrumentation, out of bounds array reference, etc. The use of uninitialized variables occurred 

due to incomplete program instrumentation. A participant would declare a temporary variable to 

hold an intermediate value during the computation, but fail to assign a value on some path 

through the computation. A rigorous acceptance test may have detected these faults earlier, 

especially those that cause an abnormal termination of the program. 
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This study was not designed to provide definitive answers to any particular questions, but 

instead to attempt to determine what the important questions are. This should guide us and others 

in the design of further experiments, in the evaluation of current proposals, and in the design of 

new methodologies. Some important questions arise as a result of this study that need to be 

answered such as: 

[ 13 There appear to be great differences in individual ability to design effective self-checks. 

This suggests that more training or experience might be helpful. Our participants had little 

of either although all were familiar with the use of pre- and post-conditions and assertions 

to formally verify programs. The data suggests that it might also be interesting to 

investigate the use of teams to instrument code. 

[2] The programs were instrumented with self-checks in our study by participants who did not 

write the original code. It would be interesting to compare this with instrumentation by the 

original programmer. A reasonable argument could be made both ways. The original 

programmer, who presumably understands the code better, might introduce fewer new 

faults and might be better able to place the checks. On the other hand, separate 

instrumentors might be more likely to detect faults since they provide a new view of the 

problem. More comparative data is needed here. 

[3] Placement of self-checks appeared to cause problems. Some checks that might have been 

effective failed to detect a fault because they were badly placed. This implies either a need 

for better decision-making and rules for placing checks or perhaps different software design 

techniques to make placement easier. 
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[4] Specification-based checks alone were not as effective as using them together with code- 

based checks. This implies that fault tolerance may be enhanced if the alternate blocks in a 

recovery block scheme, for example, are also augmented with self-checks along with the 

usual acceptance test. This may also apply to pure voting schemes such as N-version 

programming. A combination of fault-tolerance techniques may be more effective than any 

one alone. More information is needed on how best to integrate these different proposals. 

[5] The process of writing self-checks is obviously difficult. However, there may be ways to 

provide help with this process. For example, Leveson and Shimeall (1983) suggest that 

safety analysis using software fault trees (Leveson and Harvey) can be used to determine 

the content and the placement of the most important self-checks. Other types of application 

or program analysis may also be of assistance. Finally, empirical data about common fault 

types may be important in learning how to instrument code with self-checks. 

Many promising research topics, empirical studies, and experiments are suggested by the results 

of this study that may lead to better procedures for software error detection. 
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APPENDIX B 
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PRELIMINARY RESULTS OF TESTING THE RSDIMU PROGRAMS 

UNDER BENIGN CONDITIONS 
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a 

a 

a 
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The tests cases that were executed to produce the results described here are termed benign 

because they represent normal operational conditions for the programs. Low levels of 

residual noise were used and no sensor failures were introduced. Very high reliability 

would be expected from the programs under these circumstances. 

A series of fifteen simulated flights of lo00 acceleration values each were run on 17 of the 

20 versions. The three that were not run had too many problems to be of any use (too many 

runtime failures, no correct responses, corrected version not available). The sensor face 

temperature and residual noise level were varied systematically. Three different temperature 

values and five residual noise values were used. The temperatures were 5, 10, and 15 degrees 

Celsius. In all cases, the residual noise was generated by sampling from a uniform distribution t . 

The five uniform distribution ranges were 0, e, f4 ,  f6 ,  and f8. Listed below are the values of 

the other parameters: 

Number of Accel Values 

Random Number Seeds 

Noise std dev 

Display mode 

Scale0 

Scale1 

Scale2 

Misalign angles 

Nsigt 

Phi1 

ThetaI 

1000 

2839573257346274 

fixed at 20 

fixed at 88 

fixed at 3.5660e+OO 

fixed at 1.3585e-02 

fixed at 2.7169e-05 

random betw -1.0000e-01 and 1.0000e-01 

fixed at 4 

random betw 0.0000e+00 and 3.6000e+02 

random betw 0.0000e+00 and 3.6000e+02 

tIt is understood that the uniform distribution is unrealistic. This distribution was used merely to allow preliminary evaluation 
of the programs and detailed debugging of the testing environment. 
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Psi1 random betw 0.0000e+00 and 3.6000e+02 
a 

a 

a 

0 

a 

a 

The results were compared with a gold program (v2.1 provided by NCSU). In order to be 

considered correct, a version had to agree with the gold on operational status, and if that status 

was Operational or Analytical, had to agree within a specific tolerance to each of the “X”, “Y” 

and “2” components of estimated acceleration. Tolerances were relative except when close to 

zero, when an absolute tolerance (called delta) was used. The versions were compared to the gold 

using three sets of tolerances: 

Tolerance Inner Limit Around Zero Delta(Abso1ute Tolerance) 

0.00 10 0.0010 0.0001 

0.0050 0.0050 0.0005 

0.0100 0.0100 0.0010 

The individual probabilities of correct responses, the number of times and the number of 

versions that failed simultaneously, and the number of times that versions produced the same 

wrong results were computed for each of the three tested tolerances. Fourteen versions 

performed perfectly under all testing conditions at all tolerances tested. One version performed 

perfectly under conditions of no noise, and abysmally when any noise was introduced. The other 

two versions had a very high rate of identical failure. It is interesting to note that these two 

versions were produced at different universities, yet failed identically so often. 

The detailed results of all the tests follow. 
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RunNl/RunTl: 
Noise Val: f i x e d  a t  0 
T e m p s :  fixed a t  5.0000e+00 

TOLERANCE = 0 . 0 0 1 0  
Inne r  L i m i t  = 0 . 0 0 1 0  
del ta  = 0 . 0 0 0 1  

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
1.0000 
0.6770 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.6810 
1.0000 
1.0000 
1.0000 
0.9622 

Number of  s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 670 67.00 
1 18 1.80 
2 312 31.20 

0 
Number of  i d e n t i c a l  v e r s i o n  f a i l u r e s :  

#ve r s ions  #occur .  

e 

0 

0 

2 289 
3 0 
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TOLERANCE = 0 . 0 0 5 0  
Inner  L i m i t  = 0 . 0 0 5 0  
de l ta  = 0 . 0 0 0 5  

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H :  
J: 
K:  
L :  
M: 
N:  
0: 
P :  
Q:  
R: 
T: 

Average : 

f o r  s i n g l e  ve r s ions :  
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9610 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9620 
1.0000 
1.0000 
1.0000 
0.9955 

Number of s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 961 96.10 
1 1 0 . 1 0  
2 3 8  3 . 8 0  

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 3 8  
3 0 
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TOLERANCE = 0.0100 
Inner  L i m i t  = 0 . 0 1 0 0  
del ta  = 0 . 0 0 1 0  

p (Success)  
A: 
B: 
C: 
D:  
E: 
F: 
H: 
J: 
K :  
L: 
M: 
N: 
0: 
P:  
Q: 
R: 
T:  

Average : 

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
1.0000 
0.9950 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9940 
1.0000 
1.0000 
1.0000 
0.9994 

N u m b e r  of  s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 994 99.40 
1 1 0.10 
2 5 0.50 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur.  

2 5 
3 0 
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RunNl /RunTz :  
N o i s e  V a l :  fixed a t  0 
Temps :  fixed a t  1 . 5 0 0 0 e + 0 1  

TOLERANCE = 0.0010 
I n n e r  L i m i t  = 0 . 0 0 1 0  
del ta  = 0 . 0 0 0 1  

p (Success)  
A: 
B: 
C:  
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P :  
Q: 
R: 
T:  

Average : 

€ o r  s i n g l e  vers ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
0 . 6 7 8 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
0 . 6 7 3 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
0 . 9 6 1 8  

Number of s i m u l t a n e o u s  ve r s ion  f a i l u r e s :  

F a i l u r e s  # o c c u r .  % 

0 6 6 5  6 6 . 5 0  
1 2 1  2 .10  
2 3 1 4  3 1 . 4 0  

Number of ident ical  ve r s ion  f a i l u r e s :  

# v e r s i o n s  #occur. 

2 2 8 6  
3 0 
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0 
TOLERANCE = 0.0050 
Inne r  L i m i t  = 0.0050 
d e l t a  = 0.0005 

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

f o r  s i n g l e  ve r s ions  : 
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
1.0000 
1.0000 
0.9590 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9610 
1.0000 
1.0000 
1.0000 
0.9953 

N u m b e r  of s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 959 95.90 
1 2 0.20 
2 39 3.90 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur.  

2 39 
3 0 
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TOLERANCE = 0.0100 
Inne r  L i m i t  = 0 . 0 1 0 0  
de l ta  = 0 . 0 0 1 0  

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K :  
L :  
M: 
N: 
0: 
P :  
Q:  
R: 
T: 

Average : 

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
1.0000 
0.9960 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9960 
1.0000 
1.0000 
1.0000 
0.9995 

N u m b e r  of s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 996 99.60 
1 0 0.00 
2 4 0.40 

Number of i d e n t i c a l  v e r s i o n  failures: 

#ver s ions  #occur .  

2 4 
3 0 

e 
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a 
RunNl/RunT3: 

Noise Val: f i x e d  a t  0 
Temps: f i x e d  a t  2.5000e+01 

TOLERANCE = 0.0010 
Inne r  L i m i t  = 0 . 0 0 1 0  
delta = 0 . 0 0 0 1  

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0 :  
P: 
Q: 
R: 
T: 

Average : 

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
0.6680 
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
1.0000 
1.0000 
1.0000 
0.6700 
1.0000 
1 . 0 0 0 0  
1 . 0 0 0 0  
0 . 9 6 1 1  

Number of s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 659 65.90 
1 20 2 . 0 0  
2 321 32.10 

N u m b e r  of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 293 
3 0 
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TOLERANCE = 0.0050 
Inne r  L i m i t  = 0.0050 
del ta  = 0.0005 

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q:  
R: 
T: 

Average : 

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
1.0000 
0.9610 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9650 
1.0000 
1.0000 
1.0000 
0.9956 

Number of s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 961 96.10 
1 4 0.40 
2 35 3.50 

N u m b e r  of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 35 
3 0 
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e 
TOLERANCE = 0 . 0 1 0 0  
Inne r  L i m i t  = 0 . 0 1 0 0  
del ta  = 0 . 0 0 1 0  

p (Success)  
A: 
B: 
C: 
D:  
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
1.0000 
0.9940 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1 f 0000 
0.9950 
1.0000 
1.0000 
1.0000 
0.9994 

Number of s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 994 99.40 
1 1 0.10 
2 5 0.50 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 5 
3 0 
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RunNZ/RunTl 
Noise Val: random betw -2 and '2 
Temps: fixed at 5.0000e+00 

p (Success) 
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0010 
Inner Limit = 0.0010 
delta = 0.0001 

for single versions: 
1.0000 
1.0000 
1.0000 
1.0000 
0.0000 
0.6820 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.6820 
1.0000 
1.0000 
1.0000 
0.9038 

Number of simultaneous version failures: 

Failures #occur. % 

0 0 0.00 
1 672 67.20 
2 20 2.00 
3 308 30.80 

Number of identical version failures: 

#versions #occur. 

2 288 
3 0 

e 
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0 

0 

0 

0 

p (Success)  
A: 
B: 
C:  
D:  
E :  
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0050 
Inner  L i m i t  = 0.0050 
d e l t a  = 0 .0005  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1.0000 
1 . 0 0 0 0  
1.0000 
0.0040 
0.9620 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9630 
1.0000 
I. 0000 
1.0000 
0.9370 

Number of s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 4 0.40 
1 957 95.70 
2 3 0.30 
3 36 3.60 

Number of  i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 36 
3 0 

* 
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p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0100 
Inner  L i m i t  = 0 .0100  
d e l t a  = 0 .0010  

f o r  s i n g l e  ve r s ions :  
1.0000 
1.0000 
1 . 0 0 0 0  
1.0000 
0.1560 
0.9910 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9910 
1 * 0000 
1. 0000 
1.0000 
0.9493 

Number of s imultaneous ve r s ion  f a i l u r e s  : 

F a i l u r e s  #occur .  % 

0 156 15.60 
1 835 83.50 
2 0 0.00 
3 9 0.90 

N u m b e r  of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 9 
3 0 

a 
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RunN2/RunT2 
Noise Val: random betw -2 and 2 
Temps: fixed at 1.5000e+01 

p (Success) 
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0010 
Inner Limit = 0.0010 
delta = 0.0001 

for single versions: 
1.0000 
1.0000 
1.0000 
1.0000 
0.0000 
0.6800 
1.0000 
1.0000 
i. i10Uu 
1.0000 
1.0000 
1.0000 
1.0000 
0.6760 
1.0000 
1.0000 
1.0000 
0.9033 

Number of simultaneous version failures: 

Failures #occur. % 

0 0 0.00 
1 666 66.60 
2 24 2.40 
3 310 3 1 . 0 0  

Number of identical version failures: 

#versions #occur. 

2 288 
3 0 
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p (Success)  
A: 
B: 
C:  
D :  
E :  
F: 
H :  
J: 
K: 
L: 
M: 
N: 
0: 
P:  
Q: 

T:  
Average : 

0 .  
.K: 

TOLERANCE = 0.0050 
Inner  L i m i t  = 0.0050 
del ta  = 0 . 0 0 0 5  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 f 0000 
1.0000 
0.0030 
0.9630 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9650 
1.0000 
i. 0000 
1.0000 
0.9371 

Number of s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 3 0.30 
1 958 95.80 
2 6 0.60 
3 33 3.30 

N u m b e r  of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 33 
3 0 

e 
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p (Success)  
A: 
B: 
C: 
D :  
E :  
F: 
H: 
J: 
K :  
L: 
M: 
N :  
0: 
P :  
Q:  
R: 
T: 

Average : 

TOLERANCE = 0.0100 
Inne r  L i m i t  = 0 .0100  
del ta  = 0 .0010  

f o r  s i n g l e  ve r s ions :  
1.0000 
1.0000 
1.0000 
1 f 0000 
0.1410 
0.9910 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9910 
1.0000 
i. 0000 
1.0000 
0.9484 

Number of simultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 141 14.10 
1 850 85.00 
2 0 0.00 
3 9 0.90 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 9 
3 0 

e 
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RunN2/RunT3 
N o i s e  V a l :  random b e t w  -2 and 2 
T e m p s :  f ixed a t  2 .5000e+01 

TOLERANCE = 0.0010 
I n n e r  L i m i t  = 0 .0010  
del ta  = 0 . 0 0 0 1  

p ( S u c c e s s )  
A: 
B: 
C: 
D:  
E: 
F :  
H:  
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

f o r  s i n g l e  versions: 
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
0.0000 
0.6700 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.6680 
1 .0000 
1.0000 
1.0000 
0.9022 

N u m b e r  of s i m u l t a n e o u s  v e r s i o n  f a i l u r e s :  

F a i l u r e s  # o c c u r .  % 

0 0 0.00 
1 658 65.80 
2 2 2  2 .20  
3 320 32.00 

N u m b e r  of ident ical  v e r s i o n  f a i l u r e s :  

# v e r s i o n s  # o c c u r .  

2 2 97 
3 0 
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p (Success 1 
A: 
B: 
C: 
D:  
E: 
F:  
H :  
J: 
K: 
L: 
M: 
N:  
0: 
P :  
Q: 
K: 
T: 

Average : 

TOLERANCE = 0.0050 
Inner  L i m i t  = 0.0050 
d e l t a  = 0 . 0 0 0 5  

f o r  s i n g l e  v e r s i o n s  : 
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
1 * 0000 
0.0010 
0.9620 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9640 
1.0000 
i. 0000 
1 * 0000 
0.9369 

Number of s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 1 0.10 
1 961 96.10 
2 2 0.20 
3 36 3.60 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur.  

2 36 
3 0 
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p (Success)  
A: 
B: 
C:  
D:  
E: 
F: 
H:  
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0 . 0 1 0 0  
Inne r  L i m i t  = 0 . 0 1 0 0  
d e l t a  = 0.0010 

f o r  s i n g l e  ve r s ions :  
1.0000 
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
0.1250 
0.9920 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9920 
1.0000 
i. 0000 
1.0000 
0.9476 

Number of s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  Z 

0 125 12.50 
1 867 86.70 
2 0 0.00 
3 8 0.80 

Number of i d e n t i c a l  version f a i l u r e s :  

#ve r s ions  #occur .  

2 8 
3 0 
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e 

0 

0 

e 

e 

RunN3/RunT1 
Noise Val: random betw -4 and 4 
Temps: fixed at 5.0000e+00 

p (Success) 
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0010 
Inner Limit = 0.0010 
delta = 0.0001 

for single versions: 
1.0000 
1.0000 
1.0000 
1 . 0 0 0 0  
0 .0000  
0.6850 
1 .0000  
1 .0000  
i. 0000 
1.0000 
1 .0000  
1 .0000  
1.0000 
0.6860 
1.0000 
1 .0000  
1 f 0000  
.O .9042 

Number of simultaneous version failures: 

Failures #occur. % 

0 0 0.00 
1 672 67.20 
2 27 2.70 
3 301 30.10 

Number of identical version failures: 

#versions #occur. 

2 287 
3 0 
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e 

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0050 
Inner  L i m i t  = 0 .0050  
d e l t a  = 0 .0005  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
0.0000 
0.9570 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9620 
1.0000 
1.0000 
1.0000 
0.9364 

Number of s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 0 0.00 
1 957 95.70 
2 5 0.50 
3 38 3.80 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 38 
3 0 
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a 

0 

c 

0 

0 

p (Success)  
A: 
B: 
C:  
D:  
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0 . 0 1 0 0  
Inne r  L i m i t  = 0 . 0 1 0 0  
del ta  = 0.0010 

for s i n g l e  ve r s ions :  
1.0000 
1 . 0 0 0 0  
1.0000 
1.0000 
0 .0700  
0.9890 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9900 
1 . 0 0 0 0  
1.0000 
1.0000 
0.9441 

Number of  s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 69 6.90 
1 920 92-00 
2 2 0.20 
3 9 0.90 

Number of  i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur.  

2 10 
3 0 

a 
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Q 
RunN3/RunT2 

Noise Val: random betw -4 and 4 
Temps: fixed at 1.5000e+01 

p (Success) 
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0010 
Inner Limit = 0.0010 
delta = 0.0001 

for single versions: 
1.0000 
1.0000 
1.0000 
1.0000 
0.0000 
0.6850 
1.0000 
1.0000 
i. uuuu 
1.0000 
1.0000 
1.0000 
1.0000 
0.6810 
1.0000 
1.0000 
1.0000 
0.9039 

Number of simultaneous version failures: 

Failures #occur. % 

0 0 0.00 
1 671 67.10 
2 2 4  2.40 
3 305 30.50 

Number of identical version failures: 

#versions #occur. 

2 289 
3 0 
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0 

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N:  
0: 
P:  
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0050 
Inner  L i m i t  = 0 .0050  
d e l t a  = 0 .0005  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
0.0000 
0.9580 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9620 
1.0000 
i. 0000 
1.0000 
0.9365 

Number of  s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 0 0.00 
1 958 95.80 
2 4 0.40 
3 38 3.80 

Number of i d e n t i c a l  v e r s i o n  f a i l u r e s :  

#ve r s ions  #occur .  

c 

2 38 
3 0 
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a 



p (Success) 
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0100 
Inner Limit = 0.0100 
delta = 0.0010 

for single versions: 
1.0000 
1.0000 
1.0000 
1.0000 
0.0610 
0.9920 
1.0000 
1.0000 
1.0000 
1.0000 
I. 0000 
1.0000 
1.0000 
0.9920 
1.0000 
i.0000 
1.0000 
0.9438 

Number of simultaneous version failures: 

Failures #occur. % 

0 60 6.00 
1 932 93.20 
2 1 0.10 
3 7 0.70 

Number of identical version f a i l u r e s :  

#versions #occur. 

2 8 
3 0 
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0 

RunN3/RunT3 
Noise Val: random betw -4 and 4 
Temps: fixed at 2.5000e+01 

TOLERANCE = 0.0010 
Inner Limit = 0.0010 
delta = 0.0001 

p (Success) 
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

for single versions: 
1.0000 
1.0000 
1.0000 
1.0000 
0.0000 
0.6770 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.6810 
1.0000 
1.0000 
1.0000 
0.9034 

Number of simultaneous version failures: 

Failures #occur. 8 

0 0 0.00 
1 668 66.80 
2 22 2.20 
3 310 31.00 

Number of identical version failures: 

#versions #occur. 

2 2 94 
3 0 
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a 

0 

0 

0 

TOLERANCE = 0 .0050  
Inne r  L i m i t  = 0 .0050  
d e l t a  = 0 .0005  

p(Success1 f o r  s i n g l e  ve r s ions :  
A: 1.0000 
B: 1.0000 
c: 1.0000 
D: 1.0000 
E: 0.0000 
F: 0.9650 
H: 1.0000 
J: 1.0000 
K: 1.0000 
L: 1.0000 
M: 1.0000 
N: 1.0000 
0: 1.0000 
P: 0.9690 
Q: 1.0000 
R: i.OOOO 
T: 1.0000 

Average : 0.9373 

Number of s imul taneous  ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 0 0.00 
1 965 96.50 
2 4 0.40 
3 31 3.10 

Number of  i d e n t i c a l  ve r s ion  failures: 

#ver s ions  #occur.  

2 31 
3 0 
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0 

e 

e 

0 

TOLERANCE = 0.0100 
Inne r  L i m i t  = 0 . 0 1 0 0  
del ta  = 0 . 0 0 1 0  

p (Success)  f o r  s i n g l e  ve r s ions :  
A: 1.0000 
B: 1.0000 
c :  1 . 0 0 0 0  
D:  1 . 0 0 0 0  
E :  0.0560 
F: 0.9920 
H: 1 . 0 0 0 0  
J: 1.0000 
K: 1.0000 
L: 1 . 0 0 0 0  
M: 1 . 0 0 0 0  
N: 1 . 0 0 0 0  
0: 1 . 0 0 0 0  
P: 0.9920 
Q: 1.0000 
Rt i . 0 0 0 0  
T: 1 . 0 0 0 0  

Average : 0.9435 

Number of simultaneoi 

F a i l u r e s  #occur .  % 

0 56 5.60 
1 936 93.60 
2 0 0.00 
3 8 0.80 

s ver s ion  f a i l u r e  

Number of  i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

i :  

2 8 
3 0 
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e 

0 

0 

0 

RunNI/RunTl 
N o i s e  V a l :  random b e t w  -6 and 6 
T e m p s :  fixed a t  5.0000e+00 

p ( S u c c e s s )  
A: 
B: 
C: 
D :  
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N:  
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0010 
I n n e r  L i m i t  = 0 .0010  
de l ta  = 0 . 0 0 0 1  

f o r  s i n g l e  v e r s i o n s :  
1 .0000  
1 .0000 
1 .0000  
1 .0000  
0 . 0 0 0 0  
0 .6870 
1 .0000  
1 .0000 
i. 0000  
1 .0000  
1 .0000  
1 .0000  
1 .0000  
0.6890 
1 .0000  
1 .0000  
1 . 0 0 0 0  
0.9045 

Number of s i m u l t a n e o u s  v e r s i o n  f a i l u r e s :  

F a i l u r e s  # o c c u r .  % 

0 0 0 . 0 0  
1 680 68.00 
2 1 6  1 . 6 0  
3 304 30.40 

Number of i d e n t i c a l  v e r s i o n  f a i l u r e s :  

# v e r s i o n s  # o c c u r .  

2 287 
3 0 
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0 

e 

e 

0 

e 

0 

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0050 
Inne r  L i m i t  = 0 .0050  
del ta  = 0 . 0 0 0 5  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
0.0000 
0.9680 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9690 
1.0000 
1.0000 
1.0000 
0.9375 

Number of s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur. % 

0 0 0.00 
1 968 96.80 
2 1 0.10 
3 31 3.10 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 31 
3 0 

8 
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0 

0 

0 

0 

0 

p (Success)  
A: 
B: 
C: 
D :  
E: 
F: 
H:  
J: 
K :  
L :  
M: 
N: 
0: 
P :  
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0100 
Inner  L i m i t  = 0 . 0 1 0 0  
d e l t a  = 0 . 0 0 1 0  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
0.0300 
0 . 9 9 4 0  
1 .0000  
1 . 0 0 0 0  
1 .0000  
1.0000 
1 .0000  
1 . 0 0 0 0  
1 . 0 0 0 0  
0 . 9 9 4 0  
1.0000 
1 .0000  
1 .0000  
0 . 9 4 2 2  

N u m b e r  of  s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 30 3 .00  
1 9 6 4  9 6 . 4 0  
2 0 0.00 
3 6 0 .60  

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 6 
3 0 
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0 

I 

I 

c 
RunN4/RunT2 

Noise Val: random betw -6 and 6 
Temps: fixed at 1.5000e+01 

p (Success) 
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0010 
Inner Limit = 0.0010 
delta = 0.0001 

for single versions: 
1.0000 
1.0000 
1.0000 
1.0000 
0.0000 
0.6900 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.6910 
1.0000 
1.0000 
1.0000 
0.9048 

Number of simultaneous version fail1 

Failures #occur. % 

res 

0 0 0.00 
1 679 67.90 
2 23 2.30 
3 298 29.80 

Number of identical version failures: 

#versions #occur.  

2 280 
3 0 
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a 

0 

0 

0 

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K :  
L: 
M: 
N: 
0: 
P:  
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0050 
Inne r  L i m i t  = 0.0050 
de l ta  = 0 .0005  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
0 . 0 0 0 0  
0.9750 
1 . 0 0 0 0  
1 .0000  
1.0000 
1.0000 
1 . 0 0 0 0  
1 .0000  
1 . 0 0 0 0  
0.9750 
1 .0000  
1 .0000  
1 .0000  
0.9382 

Number of s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 0 0 .00  
1 975 97.50 
2 0 0 .00  
3 25 2.50 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 25 
3 0 

e 
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e 

e 

A: 1 . 0 0 0 0  
B: 1 . 0 0 0 0  
c :  1.0000 
D: 1.0000 
E: 0.0280 
F: 0.9950 
H: 1 .0000  
J: 1.0000 
K: 1.0000 
L: 1 . 0 0 0 0  
M: 1 . 0 0 0 0  
N: 1 . 0 0 0 0  
0: 1 . 0 0 0 0  
P: 0.9950 
Q: 1 .0000  
R: 1.0000 
T: 1.0000 

Average : 0.9422 

TOLERANCE = 0 . 0 1 0 0  
Inne r  L i m i t  = 0 . 0 1 0 0  
d e l t a  = 0 . 0 0 1 0  

p (Success)  f o r  s i n g l e  ve r s ions :  

r s ion  f Number of s imultaneous v 

F a i l u r e s  #occur .  % 

0 28 2.80 
1 967 96.70 
2 0 0.00 
3 5 0.50 

i l u r e s  : 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 5 
3 0 
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e 

0 

0 

e 

RunN4/RunT3 
Noise V a l :  random b e t w  -6 and 6 
T e m p s :  f ixed a t  2 .5000e+01 

TOLERANCE = 0.0010 
Inner L i m i t  = 0 .0010  
del ta  = 0 . 0 0 0 1  

p ( S u c c e s s )  f o r  s i n g l e  vers ions:  
A: 1.0000 
B: 1.0000 
c: 1.0000 
D: 1.0000 
E: 0.0000 
F: 0.6890 
H: 1.0000 
J: 1.0000 
K: 1.0000 
L: 1.0000 
M: 1.0000 
N: 1.0000 
0: 1.0000 
P: 0.6880 
Q: 1.0000 
R: 1.0000 
T: 1.0000 

Average: 0 .9045 

Number of simultaneous v - r s i o n  f 

F a i l u r e s  # o c c u r .  % 

0 0 0.00 
1 677 67.70 
2 23 2.30 
3 300 30.00 

i l u r e s  : 

Number of i den t i ca l  v e r s i o n  f a i l u r e s :  

# v e r s i o n s  # o c c u r .  

2 285  
3 0 
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a 

0 

e 

a 

a 

a 

0 

p (Success)  
A: 
B: 
C: 
D:  
E :  
F: 
H:  
J: 
K:  
L :  
M: 
N: 
0: 
P :  
Q:  
R: 
T: 

Average : 

TOLERANCE = 0.0050 
Inner  L i m i t  = 0.0050 
d e l t a  = 0 .0005  

for s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
0.0000 
0.9710 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9700 
1.0000 
1.0000 
1.0000 
0.9377 

Number of s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 0 0.00 
1 969 96.90 
2 3 0.30 
3 28 2.80 

N u m b e r  of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 28 
3 0 

e 
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0 

e 

0 

0 

e 

TOLERANCE = 0 . 0 1 0 0  
Inner  L i m i t  = 0 . 0 1 0 0  
d e l t a  = 0 .0010  

p (Success 1 for s i n g l e  v e r s i o n s  : 
A: 1 . 0 0 0 0  
B: 1 . 0 0 0 0  
c :  1.0000 
D: 1.0000 
E: 0.0190 
F: 0.9940 
H: 1.0000 
J: 1.0000 
K: 1.0000 
L: 1.0000 
M: 1.0000 
N: 1.0000 
0: 1 . 0 0 0 0  
P: 0.9950 
Q: 1.0000 
R: 1.0000 
T: 1.0000 

Average: 0.9416 

Number of simultaneoi 

F a i l u r e s  #occur .  % 

0 19 1.90 
1 975 97.50 
2 1 0.10 
3 5 0.50 

s v e r s i o n  f a i l u r e s  

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 5 
3 0 

e 

a 
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a 

a 

a 

a 

RunNS/RunTl 
Noise V a l :  random b e t w  -8 and 8 
Temps: f i x e d  a t  5.0000e+00 

p (Success)  
A: 
B: 
C: 
D:  
E: 
F: 
H: 
J: 
K :  
L: 
M: 
N:  
0: 
I?: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0010 
Inner  L i m i t  = 0.0010 
d e l t a  = 0 . 0 0 0 1  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
0.0000 
0.6900 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.6830 
1.0000 
1.0000 
1.0000 
0.9043 

Number of s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 0 0.00 
1 676 67.60 
2 21 2.10 
3 303 30.30 

Number of  i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 285 
3 0 

a 
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a 

a 

0 

p (Success)  
A: 
B: 
C: 
D:  
E: 
F: 
H :  
J: 
K: 
L: 
M: 
N: 
0: 
P :  
Q:  
R: 
T: 

Average : 

TOLERANCE = 0 .0050  
Inner  L i m i t  = 0 .0050  
d e l t a  = 0 .0005  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
0.0000 
0.9650 
1.0000 
1.0000 
1.0000 
1 .0000  
1.0000 
1.0000 
1.0000 
0.9680 
1.0000 
1.0000 
1.0000 
0.9372 

Number of  s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 0 0.00 
1 965 96.50 
2 3 0.30 
3 32 3.20 

Number of  i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur.  

2 32 
3 0 
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a 

p (Success) 
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0100 
Inner Limit = 0.0100 
delta = 0.0010 

for single versions: 
1.0000 
1.0000 
1.0000 
1.0000 
0.0260 
0.9950 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9950 
1.0000 
1.0000 
1.0000 
0.9421 

Number of simultaneous version failures: 

Failures #occur. % 

0 26 2.60 
1 969 96.90 
2 0 0.00 
3 5 0.50 

Number of identical version failures: 

#versions #occur. 

2 5 
3 0 

e 
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0 

0 

0 

RunNS/RunT2 
Noise Val: random betw -8 and 8 
Temps: fixed at 1.5000e+01 

p (Success) 
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0 :  
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0010 
Inner Limit = 0.0010 
delta = 0.0001 

for single versions: 
1.0000 
1.0000 
1.0000 
1.0000 
0.0000 
0.6830 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.6840 
1.0000 
1.0000 
1.0000 
0.9039 

Number of simultaneous version failures: 

Failures #occur. % 

0 0 0.00 
1 673 67.30 
2 21 2.10 
3 306 30.60 

Number of identical version failures: 

#versions #occur. 

2 287 
3 0 
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a 

a 

a 

a 

a 

a 

a 

a 

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K :  
L: 
M: 
N: 
0: 
P:  
Q: 
R: 
T:  

Average : 

TOLERANCE = 0 .0050  
Inner  L i m i t  = 0 .0050  
d e l t a  = 0 .0005  

f o r  s i n g l e  v e r s i o n s  : 
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 .0000  
0 .0000  
0.9700 
1 . 0 0 0 0  
1 .0000  
1 . 0 0 0 0  
1.0000 
1 .0000  
1 .0000  
1 .0000  
0 .9680  
1 . 0 0 0 0  
1 .0000  
1 .0000  
0.9375 

Number of s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 0 0 .00  
1 968 96.80 
2 2 0.20 
3 3 0  3 .00  

Number of  i d e n t i c a l  v e r s i o n  f a i l u r e s :  

#ve r s ions  #occur .  

2 3 0  
3 0 

a 

a 

-87-  

a 



e 

a 

e 

p (Success)  
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L :  
M: 
N:  
0: 
P :  
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0100 
Inner  L i m i t  = 0 .0100  
d e l t a  = 0 . 0 0 1 0  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
0.0230 
0.9940 
1 .0000  
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9950 
1.0000 
1.0000 
1.0000 
0.9419 

Number of s imultaneous v e r s i o n  f a i l u r e s :  

F a i l u r e s  #occur.  % 

0 23  2.30 
1 971 97.10 
2 1 0.10 
3 5 0.50 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s  : 

#ver s ions  #occur .  

2 5 
3 0 
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a 

e 

RunN5/RunT3 
Noise Val: random betw -8 and 8 
Temps: fixed at 2.5000e+01 

p (Success) 
A: 
B: 
C: 
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0.0010 
Inner Limit = 0.0010 
delta = 0.0001 

for single versions: 
1.0000 
1.0000 
1.0000 
1.0000 
0.0000 
0.6790 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.6760 
1.0000 
1.0000 
1.0000 
0.9032 

Number of simultaneous version failures: 

Failures #occur. % 

0 0 0.00 
1 670 67.00 
2 15 1.50 
3 315 31.50 

Number of identical version failures: 

#versions #occur. 

2 2 92 
3 0 
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a 

a 

0 

p (Success)  
A: 
B: 
C :  
D: 
E: 
F: 
H: 
J: 
K: 
L: 
M: 
N: 
0: 
P: 
Q: 
R: 
T: 

Average : 

TOLERANCE = 0 .0050  
Inne r  L i m i t  = 0 .0050  
d e l t a  = 0 . 0 0 0 5  

f o r  s i n g l e  ve r s ions :  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
0.0000 
0.9660 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9690 
1.0000 
1.0000 
1.0000 
0.9374 

Number of s imultaneous ve r s ion  f a i l u r e s :  

F a i l u r e s  #occur .  % 

0 0 0.00 
1 966 96.60 
2 3 0.30 
3 31 3.10 

Number of i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur .  

2 31 
3 0 
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0 

e 

e 

e 

e 

e 

TOLERANCE = 0.0100 
Inner  L i m i t  = 0 . 0 1 0 0  
d e l t a  = 0.0010 

p (Success)  f o r  s i n g l e  ve r s ions :  
A: 
B: 
C:  
D: 
E :  
F: 
H:  
J: 
K: 
L: 
M: 
N:  
0: 
P: 
Q: 
R: 
T: 

Average : 

Number of  

1.0000 
1.0000 
1.0000 
1.0000 
0.0190 
0.9910 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9920 
1.0000 
1.0000 
1.0000 
0.9413 

s imu 1 t anec 

F a i l u r e s  #occur .  % 

s ver s ion  f a i l u r e  

0 19 1.90 
1 972 97.20 
2 1 0.10 
3 8 0.80 

Number of  i d e n t i c a l  ve r s ion  f a i l u r e s :  

#ve r s ions  #occur.  

2 8 
3 0 

i :  

e 

e 

-91  - 

e 



a 

DISTRIBUTION LIST 

a 

Copy No. 

1 - 3  

4 - 59; 

0 

a 

a 

a 

a 

0 

0 

6 - 7  

8 

9 - 10 

11 

National Aeronautics and Space Administration 
Langley Research Center 
Hampton, Virginia 23665  

Attention: Dr. Dave E. Eckhardt, Jr. 
ISD M/S 4 7 8  

NASA Scientific and Technical Information 
Facility 

P.O. Box 8757 
Baltimore/Washington International Airport 
Baltimore, Maryland 21240  

‘;1 reproducible copy 

J .  C. Knight, CS 

A. Catlin, CS 

E. H. Pancake, Clark Hall 

SEAS Publications Files 

JO#87 7 3  : ald 

a 


